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X-ray interference fringes in the beams diffracted from a lateral surface of a thin

plane-parallel crystal are measured and analyzed using Wagner’s approach

[Wagner (1956), Z. Phys. 146, 127–168]. It is found that the fringes are caused by

the interference between the internal waves excited by the incident beam in

both the Bragg–Laue case and the Bragg–Bragg–Laue case. The period of the

interference fringes is shown to be proportional to the distance between the

incident point of the X-ray and the crystal edge, and to be inversely proportional

to the crystal thickness.

1. Introduction

X-ray interference fringes in the diffraction from a lateral

surface (we call this diffraction DLS for brevity) were recently

measured from a thin plane-parallel crystal in the Bragg–

(Bragg)m–Laue (BBmL) geometry (Fukamachi et al., 2004,

2005). The first ‘Bragg’ means the initial diffraction is in the

Bragg case, ‘(Bragg)m’ means a sequence of m diffractions in

the Bragg case between the top and bottom surfaces, and

‘Laue’ means the final diffraction in the Laue case from the

lateral surface as shown in Fig. 1. In this figure, H is the crystal

thickness and L is the distance between the incident point of

the X-ray and the crystal edge. The intensities P0h and P0t mean

the Laue diffraction in the diffracted and transmitted direc-

tions from the lateral surface, respectively. Yan & Noyan

(2005) have also observed DLS in the BBmL case using both

white and monochromatic X-rays. Since DLS is produced

when the linear absorption coefficient � is minimized due to

the dynamical diffraction (Borrmann) effect, the path length

of the X-rays is quite large.

In this paper we report on the measurements of the inter-

ference fringes in the BBmL case (m = 0 and 1) using X-rays

from synchrotron radiation and the analysis of the fringes

using Wagner’s approach (Wagner, 1956), which is based on

Laue’s dynamical theory of diffraction.

2. Experiment

The measuring system is schematically shown in Fig. 2. The

experiments were carried out using X-rays from synchrotron

radiation at BL-15C, Photon Factory, KEK, Tsukuba, Japan.

The DLS of the 220 reflection was observed from a Ge crystal

whose etch-pit density was less than 500 cm�2 and thickness H

was 45 � 2 mm. The X-rays were �-polarized and were

monochromated using an Si 111 double-crystal mono-

chromator and a Ge 220 monochromator. The X-ray energy

was 11100 � 0.5 eV, which was 3 eV below the Ge K-

Figure 1
Schematic illustration of the beam geometry in the BBmL case. �B is the
Bragg angle, H is the crystal thickness and L is the distance between the
incident point of the X-ray and the edge of the crystal.

Figure 2
Schematic diagram of the measuring system. SR is the synchrotron-
radiation X-ray source and SC is the scintillation counter. The crystal
thickness of the specimen is 45� 2 mm. The inset is a magnification of the
region around the sample crystal.



absorption edge and the absorption effect is small. The

divergence angle of the incident beam was approximately

5 arcsec, which was estimated by the full width at half-

maximum (FWHM) of the Ge 220 reflection. The vertical and

horizontal widths of the incident beam after slit 1 were

adjusted to be 20 and 500 mm, respectively. The transmitted

(Pt) and diffracted (Ph) intensities as well as the emitted beam

intensities from the lateral surface in the transmitted (P
0

t) and

diffracted (P
0

h) directions were recorded on the nuclear plates

and were measured by scintillation counters. Fig. 3(a) shows a

photograph of the diffraction patterns of Pt (upper) and P
0

t

(lower) and Fig. 3(b) shows those of Ph (lower) and P
0

h (upper)

when the incident angle is set to the value at which the

intensities of P
0

h and P
0

t become maximum. The interference

fringes are observed in the patterns of P
0

h and P
0

t.

Fig. 4 shows the intensity distributions of P
0

h (filled circles)

and P
0

t (open circles) with respect to the position (y) in the

photograph of Fig. 3. The distance L is changed; L is 576 �

40 mm in Fig. 4(a), 657 � 40 mm in (b) and 801 � 40 mm in (c).

The backgrounds of P
0

h are lower than those of P
0

t. The

intensity variations of P
0

h and P
0

t with respect to the position

are in phase with each other regardless of the distance L. The

peak at y = H is not due to the interference, as described later.

The period of the interference fringes �B increases linearly as

L increases. The periods of the interference fringes between

the first and the second peaks from y = H in P
0

h were measured

for the three values of L and are listed in Table 1.

3. Analysis of interference fringes

3.1. Propagating direction of X-ray energy

It is well known that the propagating direction of the X-ray

energy in a crystal corresponds to the direction of the corre-

sponding Poynting vector. It is expressed by using the electric

displacement fields D
ðjÞ
0 of the transmitted (0) beam and D

ðjÞ
h of

the hth diffracted beam. The superscript (j) on D represents

the dispersion surface (1) or (2). The time- and space-

averaged Poynting vector SðjÞ is given by
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Figure 3
Photographs of Pt and P0t (a), and Ph and P0h (b). In (a) the upper part is Pt

and the lower part is P0t. In (b) the upper part is P0h and the lower part is
Ph. The distance L is 801 mm. Here y0 ¼ y cos �B and H 0 ¼ H cos �B as
shown in Fig. 2.

Figure 4
The DLS intensities of the Ge 220 reflection with respect to the crystal
thickness. The filled circles show the measured intensities of P0h and the
open circles those of P0t. The thick solid lines show the calculated intensity
of P0h and the thin solid lines show P0t with respect to the crystal thickness.
The distance L is (a) 576 � 40 mm (b) 657 � 40 mm and (c) 801 � 40 mm.
In the calculation, the normal atomic scattering factor of 22.37, the real
part of anomalous scattering factor of �9.08 and the imaginary part of
1.13 are used (Yoshizawa et al., 2005).

Table 1
Periods of the interference fringes.

�B (mm)

L (mm) Measured
Calculated using
equation (5)

Calculated using
equation (17)

576 � 40 8.1 � 0.8 8.1 8.1
657 � 40 9.8 � 1.0 9.4 9.4
801 � 40 12.1 � 1.2 12.3 11.7



SðjÞ ¼ s0jD
ðjÞ
0 j

2
þ shjD

ðjÞ
h j

2
þ ðs0 þ shÞjD

ðjÞ
0 jjD

ðjÞ
h j cos ’ðjÞ; ð1Þ

as shown in Fig. 5. Here s0 and sh are the unit vectors of the

transmitted and diffracted beam directions, respectively, and

the phase ’ðjÞ is defined by

’ðjÞ ¼ argðD
ðjÞ
h Þ � argðD

ðjÞ
0 Þ: ð2Þ

In a non-absorbing crystal, the third term of the right side of

(1) can be neglected as cos ’ðjÞ ¼ 0. Then the Poynting vector

SðjÞ is written as

SðjÞ ¼ sojD
ðjÞ
0 j

2
þ shjD

ðjÞ
h j

2: ð3Þ

The angle "ðjÞ between the Poynting vector and the diffraction

plane is given by

tan "ðjÞ cot �B ¼
jD
ðjÞ
0 j

2
� jD

ðjÞ
h j

2

jD
ðjÞ
0 j

2
þ jD

ðjÞ
h j

2
¼

1� ½rðjÞ�2

1þ ½rðjÞ�2
; ð4Þ

where rðjÞ ¼ jD
ðjÞ
h =D

ðjÞ
0 j is the reflectivity and �B is the Bragg

angle (Pinsker, 1978). Hereafter, we drop the superscript j on

", ’, r and the Poynting vector S.

3.2. Interference fringes

We study the origin of the interference fringes observed in

DLS by using Wagner’s approach (Wagner, 1956). Fig. 6 shows

the dispersion surface for a weakly absorbing crystal in the

upper part and the effective absorption coefficient � in the

lower part for the X-ray energy corresponding to the present

experiment. The parameter W is defined by W = X/X0 with X0

= 1/(2�), � = � cos �B/|�h|, where � is X-ray wavelength and

�h is the hth Fourier transform of the X-ray polarizability. The

width �|W| of the DLS beam can be estimated to be

approximately 0.1. This width corresponds to the angle width

of 0.25 arcsec for the Ge 220 reflection.

In the present experiment, since the incident divergence

angle is 5 arcsec and the incident beam is regarded as a

spherical wave, the two beams corresponding to Sm¼0 and S0m¼0

are simultaneously excited, as shown in Figs. 6 and 7. The

beams corresponding to Sm¼0 in the angle region

" � "1 ¼ tan�1ðH=LÞ directly reach the lateral surface B (BL

case) as shown in Fig. 7. The beams corresponding to S0m¼0 in

the region "> "1 reach the bottom surface C first, parts of the

beams are reflected to the beams corresponding to S0m¼0 which

reach the surface B (BBL case), and the rest of them are

transmitted through the bottom surface. The incident beam

whose electric field is E0 induces two electric displacement

fields D
1ð1Þ
0 and D

1ð1Þ
h at a tie point on the dispersion surface (1).

The Poynting vectors of Sm¼0 and S0m¼0 are consistent with

D
1ð1Þ
0 and D

1ð1Þ
h . As described above, the beams corresponding

to Sm¼0 directly reach the point y0 on the surface B. The beams

corresponding to S0m¼0 consistent with the two electric

displacement fields D
1ð2Þ
0 and D

1ð2Þ
h excited at a tie point on the

dispersion surface (2) also reach the point y0 on the surface B.

At the point y0, there are two components D
1ð1Þ
h ðy0Þ and

D
1ð2Þ
h ðy0Þ [D

1ð1Þ
0 ðy0Þ and D

1ð2Þ
0 ðy0Þ] in the diffracted [transmitted]

beam direction. The intensities P0hand P0t at y0 are given by

P0hðy0Þ ¼

�����BLD
1ð1Þ
h exp �i2� k

ð1Þ
hY y0 þ k

ð1Þ
hX L

� �h i

þ�BBLD
1ð2Þ
h exp �i2� k

ð2Þ
hY y0 þ k

ð2Þ
hX L

� �h i����
2

ð5aÞ

and

P0tðy0Þ ¼

�����BLD
1ð1Þ
0 exp �i2� k

ð1Þ
0Y y0 þ k

ð1Þ
0XL

� �h i

þ�BBLD
1ð2Þ
0 exp �i2� k

ð2Þ
0Y y0 þ k

ð2Þ
0XL

� �h i����
2

: ð5bÞ

Here k
ðjÞ
0Y and k

ðjÞ
hY are the Y components of the wavevectors of

the transmitted and diffracted beams, respectively, and k
ðjÞ
0X

and k
ðjÞ
hX are the X components. �BL and �BBL are the

correction factors of the beam widths for the corresponding

diffractions in the BL and BBL cases (Authier, 2001; Yoshi-

zawa et al., 2008) and are given by

�2
BL;BBL ¼ ðl

00=l0Þ ¼ ð1� r2
Þ=ð1þ r2

Þ: ð6Þ

Acta Cryst. (2009). A65, 253–258 Kenji Hirano et al. � Interference fringes 255

research papers

Figure 6
The dispersion surface and the Poynting vectors. The upper part shows
the real part and the lower part the effective absorption coefficient � (the
imaginary part). The dispersion surface (1) lies on the upper side and the
dispersion surface (2) on the lower side.

Figure 5
Schematic illustration showing the direction of the Poynting vector S with
respect to the incident (k0) and the diffracted (kh) beams.



Here l0 and l00 are the widths of the incident and the diffracted

beams from the lateral surface as shown in Fig. 8. In this

calculation, the beams in the multiple Bragg case (m > 1) are

neglected because those beams are weaker than the beams in

the BL and BBL cases.

Fig. 4 shows the calculated values of P0hðyÞ and P0tðyÞ by

using the electric displacement fields D
1ð1Þ
0;h and D

1ð2Þ
0;h given in a

previous paper (Hirano et al., 2008). Although no phase shift

in the x direction is taken into account in the previous paper,

both phase shifts in the x and y directions are taken into

account in Fig. 4 as described in x3.3. The peaks of the

observed intensity distributions are well reproduced by the

calculation except for the peak at y = H. The calculated fringes

of P0hðyÞ and P0tðyÞ are in phase with each other, which is in

good agreement with the measured results.

Since the relation D
1ð1Þ
h ðHÞ þD

1ð2Þ
h ðHÞ ¼ 0 holds from the

boundary condition, there should be no peak in P0hðyÞ at y = H.

As the peak width of P0hðyÞ at y = H is much narrower than

those of the interference fringes and the peak height increases

as L increases, the peak at y = H cannot be explained by the

interference effect but can be explained by the confined-beam

effect, which comes from the third term in equation (1)

(Fukamachi et al., 2006). The beam confinement occurs

because cos ’ is not zero under the present experimental

conditions.

3.3. Period of interference fringes

As described above, the fringes in Fig. 4 are caused by the

interference between the internal waves excited by the inci-

dent beam in both the BL case and the BBL case. If we give

the phase difference between the two beams in the x and y

directions as 2���x and 2���y, respectively, the total phase

difference 2��� is given by

2��� ¼ 2�ð��x þ��yÞ ¼ 2�ð�x�X þ�y�YÞ: ð7Þ

Here �x and �y are the path differences in the x and y

directions, and �X and �Y are the differences in the X and Y

components of the wavevectors in the reciprocal-lattice space.

In Fig. 7, the path of the beam in the BL case that reaches

the point y = 0 on the lateral surface B is given as OQ, and that

of the beam in the BBL case that reaches the point y = 0 is

given as OP0Q, whose length corresponds to OP0Q00. The path

difference between OQ and OP0Q in the y direction is 2H. On

the other hand, there is no path difference between two beams

in the BL and BBL cases that reach the point y = H (Q0). The

path difference �y between the beams reaching Q and Q0 is

2H. The angle "2 in Fig. 7 is given by "2 ¼ tan�1ð2H=LÞ.

The beam propagating along OQ is excited at the point � on

the dispersion surface (1) in Fig. 6 and the corresponding

Poynting vector is Sm¼0ð" ¼ 0Þ. The beam propagating along

OP0Q is excited at the point 	 [Y ¼ �Yð"2Þ] on the dispersion

surface (2) and the corresponding Poynting vector is

S0m¼1ð" ¼ "2Þ. The difference in the Y component of the

wavevectors between two points � and 	 is jYð"2Þj as shown in

Fig. 6. There is no difference in the wavenumber between the

two points �0 [Y ¼ Yð"1Þ] on the dispersion surface (1) and 	0

[Y ¼ �Yð"1Þ] on the dispersion surface (2), because the

beams from the tie points of �0 and 	0 directly reach the point y

= H (Q0). Since the distance jYð"1Þj between the points � and

�0 is the same as that of � and 	0, �Y becomes jYð"2Þj and the

maximum phase angle ��max
y in the y direction is written as

��max
y ¼ ð�y�YÞmax ¼ 2HjYð"2Þj: ð8Þ

For a non-absorbing crystal, the equation of the dispersion

surface is written as

X2
¼ Y2 tan2 �B þ X2

0 : ð9Þ

By differentiating equation (9) with respect to Y, the following

relation is obtained:

X ¼ �Yðtan2 �B= tan "Þ ¼ �Yðtan �B=pÞ; ð10Þ

where tan " ¼ �dX=dY and p ¼ tan "= tan �B. By substituting

equation (10) into equation (9), we obtain

Yð"2Þ ¼ ðH=�Lq tan2 �BÞ; ð11Þ

with q ¼ ½1� p2ð"1Þ�
1=2. As the difference in the path length

�x is L, the phase difference ��x is given by ��x = L�X. In

the BL case, the distance between � and �0 along the X

direction is �XBL ¼ �Xð"1Þ. In the BBL case, the distance

between 	0 and 	 is �XBBL ¼ �3�Xð"1Þ. The maximum

difference in the wavenumber of �X becomes
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Figure 8
Illustrations of diffraction geometries for the determination of correction
factors corresponding to the variations of the diffracted beam width. (a)
BL case; (b) BBL case.

Figure 7
The paths of the beams in the BL and the BBL cases and the
corresponding Poynting vectors Sm¼0, S0m¼0 and S0m¼1.



j�Xmaxj ¼ j�XBL þ�XBBLj ¼ 2j�Xð"1Þj: ð12Þ

When �" ¼ "1 � ", the difference in the X components of

wavevectors in the BL and BBL cases is written as

�XBL or BBL½"1ð�Þ�"� ¼ �Xð"1Þ ��Xð"1Þ½1ð�Þ
�
2: ð13Þ

Here the upper sign in the parentheses is taken in the BL case

and the lower sign in the BBL case. 
 is zero at y = H and 1 at y

= 0. The difference in the wavenumber �X is obtained as

�X ¼ �XBBLð"1 þ�"Þ þ�XBLð"1 ��"Þ ¼ �2�Xð"1Þ

2:

ð14Þ

By substituting Xð"1Þ ¼ X0 þ�Xð"1Þ into equation (9),

�Xð"1Þ is given by

�Xð"1Þ ¼ �Y2ð"1Þ tan2 �B: ð15Þ

When 
 = 1, the maximum value j��max
x j of the phase differ-

ence ��x is obtained from equation (12) as

j��max
x j ¼ jL�Xmaxj ¼ j2L�Xð"1Þj ð16Þ

and j��max
y =��max

x j ¼ 4q. Using these relations, the phase

shifts ��, ��y ¼ 4HYð"1Þ
, ��x = L�X, L�XBL and L�XBBL

normalized by ��max
y are calculated as a function of 
 from 0 to

1 when q = 1. The results are shown in Fig. 9.

When ��x + ��y = 1, the period �B(
) = 
H is given as

�Bð
Þ ¼
�L

2H

q

½1� 
=ð4qÞ�
tan2 �B ð17Þ

because 2�Bð
ÞYð"2Þ½1� 
=ð4qÞ� ¼ 1. �B is proportional to L

and is inversely proportional to H. Then it increases as y

changes from H to 0. The calculated values of �B obtained

using equation (17) under the present experimental conditions

agree with the measured results within the experimental error

as shown in Table 1.

4. Summary

In summary, we have obtained the following results.

The interference fringes in the measured DLS are explained

by the interference between the internal waves excited by the

incident beam in both the BL case and the BBL case. The

interference fringes in P0h and P0t are in phase with each other

and the period of the fringes �B is proportional to L and is

inversely proportional to H according to equation (17). In

addition �B increases as y changes from H to 0.

The peak at y = H cannot be explained by the interference

fringe in the BBmL case. According to the present analysis of

the interference fringes in the BBmL case, it is possible to

observe the fringes from other samples such as Si. We have

actually observed the fringes of the Si 220 reflection, but we

could not observe the peak at the bottom end of the sample (y

= H). This is because the absorption coefficient of Si is too

small to cause the confined-beam effect. Detailed results will

be published in a separate paper.

In this paper, as the incident X-ray energy was tuned very

close to the Ge K-absorption edge, the beams in multiple

Bragg cases (m > 1) can be neglected. But if the X-ray energy

is about 10 eV below the Ge K-absorption edge, it is necessary

to take the beams in multiple Bragg cases into account.

The present approach may be applied to the analysis of the

interference fringes in the Laue–Bragg–Laue case, i.e., the so-

called Borrmann–Lehmann fringe (Borrmann & Lehmann,

1963; Lang et al., 1986). As there was a large discrepancy

between the periods of the interference fringes measured by

Lang et al. (1986) and their calculated ones, it is necessary to

measure the interference fringes more precisely by using the

present experimental system.

When we could not measure DLS, we sometimes observed

peaks from the mirage effect from the incident surface

(Authier, 2001; Yan & Noyan, 2006). This in turn means that

the DLS mode is very sensitive to lattice deformations due to

defects in a perfect crystal, which is one of the useful appli-

cations of DLS.
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